1. Apart from gravity, the forces on the cylinders include the applied force of magnitude
F', normal forces between the bottom two cylinders and the ground with magnitudes
Ny and N, and three pairs of forces with magnitudes N,, N, and N, between the
cylinders (as shown on the diagram).

e The low limit on the acceleration is given by the condidtion that the two
bottom cylinders lose contact, i.e., N, = 0. Then, the horizontal component
of the force on the right cylinder is

Ma = Nysin (7/6) = Np/2 (1)
The vertical components of the forces on the top cylinder:
Mg = Nycos (m/6) + N, cos (m/6) (2)
and the left cylinder:
Ngysin(n/6) = No/2 =F — Ma = 2Ma, (3)

Eliminating N, and Ny

Mg = (2Ma + 4Ma)V'3/2 (4)
and amin = %

e When the acceleration is increased beyond a certain value, the top cylinder
will lose contact with the right cylinder. It corresponds to vanishing N;. In
this case for the top cylinder the vertical components of the forces:

Mg = N, cos (7/6) (5)
For horizontal components we get
Ma = Ngsin (w/6) = No/2, (6)
and @maeg = 529/V3 = 9/V3 = 3amin



2. The force on the particle in the magnetic field is mi = gr X B. In cylindrical co-
ordinates, where r = 7t, ¥ = 7 + 760, and ¥ = 7t + 2700 + 100 — r0%#, at any given
time the tangential projection of the force on the particle is

m(27-0 + rf) = ¢i-B (7)
By multiplying both sides of the equation by r, we get
2mri6 + 126 = qriB, (8)
or, extracting the full time differential on the left,

md(r20) _ 4B (r)rdr

dt dt (9)

which could also be seen as the rate of change of angular momentum of the par-
ticle L = mr26 being equal to the torque about the center of the circular region.
Integrating (9) over the time it takes for the particle to exit the circular region,

e r=R
r2g|i= =R z/ gBrdr (10)
’ r=0

The right side is ¢/27 times the total flux through the circular region, which is zero,
so 0 at the time the particle leaves the region must be zero. Since the total velocity
of the particle is non-zero (a static magnetic field does not do work), the velocity of
the particle then must point radially outward.



3. First Solution:
Consider the following auxiliary

Problem: Two set-ups are shown in the figure.

M, M,

(The first contains a hanging mass m. The second contains a hanging pulley, over
which two masses, M; and M5, hang.) Both supports have acceleration a; down-
ward. What should m be, in terms of M; and Ms, so that the tension in the top
string is the same in both cases?

Answer: In the first case, we have
mg — T = mas. (11)

In the second case, let a be the acceleration of My relative to the support (with
downward taken to be positive). Then we have

T
Mg -5 = M (as — a),
T
MQQ_E = Ms(as + a). (12)

mg, = T,
T
Mlgl = 5 - Mla,
T
Myg' = 5t Msa (13)



The last two give 4M7yMsg' = (M + M3)T. The first equation then gives

4M; M,

= - < 14
My + M,y ( )

m
Note that the value of a; is irrelevant. (We effectively have a fixed support in a world
where the acceleration from gravity is ¢’.) This problem shows that the two-mass
system in the second case may be equivalently treated as a mass m, as far as the
upper string is concerned. m

Now let’s look at our infinite Atwood machine. Start at the bottom. (Assume the
system has N pulleys, where N — c0.) Let the bottom mass be . Then the above
problem shows that the bottom two masses, M and z, may be treated as an effective

mass f(z), where
4z

T 1+ (¢/M)
We may then treat the combination of the mass f(z) and the next M as an effective

mass f(f(z)). These iterations may be repeated, until we finally have a mass M
and a mass f(M—1)(z) hanging over the top pulley.

f(z) (15)

We must determine the behavior of f¥(z), as N — co. The behavior is obvious by
looking at a plot of f(z) (which we’ll let the reader draw). (Note that z = 3M is
a fixed point of f, i.e., f(3M) = 3M.) It is clear that no matter what = we start
with, the iterations approach 3M (unless, of course, z = 0). So our infinite Atwood
machine is equivalent to (as far as the top mass is concerned) just the two masses
M and 3M.

We then easily find that the acceleration of the top mass is (net downward force)/(total
mass) = 2Mg/(4M) = g/2.

NOTE: As far as the support is concerned, the whole apparatus is equivalent to a
mass 3M. So 3Mg is the weight the support holds up.

Second Solution:

Note that if the gravity in the world were multiplied by a factor 7, then the tension
in all the strings would likewise be multiplied by 1. (The only way to make a tension,
i.e., a force, is to multiply a mass times g.) Conversely, if we put the apparatus on
another planet and discover that all the tensions are multiplied by 7, then we know
the gravity there must be ng.

Let the tension in the string above the first pulley be T. Then the tension in the
string above the second pulley is 7'/2 (since the pulleys are massless). Let the
acceleration of the second pulley be apo. Then the second pulley effectively lives in



a world where the gravity is g — a,p. If we imagine holding the string above the
second pulley and accelerating downward at a,e (so that our hand is at the origin
of the new world), then we really haven’t changed anything, so the tension in this
string in the new world is still 7'/2.

But in this infinite setup, the system of all the pulleys except the top one is the
same as the original system of all the pulleys. Therefore, by the arguments in the

first paragraph, we must have
T T/2
r__Te (16)
g g — ap2
Hence, a,2 = g/2. (Likewise, the relative acceleration of the second and third pulleys
is g/4, etc.) But aps is also the acceleration of the top mass. So our answer is g/2.

Note that 7' = 0 also makes eq. (16) true. But this corresponds to putting a mass
of zero at the end of a finite pulley system.



4. This problem is just another variation of the popular resistor cube problem, offered,
among other places, in BAUPC’96.

There are two solutions; the second is by far more general and will work with any
symmetric polyhedron (or a resistor graph).

(a) A straightforward solution

The trick is to simplify the diagram by connecting with a wire points which
have equal potential anyway. Let’s assume that the leads are connected to
vertices 1 and 2. Then due to symmetry consideration the following sets of
points will have equal potentials:

e 3.6,9 11

e 4.5

e 7.8



The diagram reduces to:

=

10

12

2

Thicker pen used for resistances of 1/2 Ohm.

Further simplification is achieved by shorting the middle points of 1 — 2 and
10 — 12 resistors to the equipotential line 3,6 — 9,11. Now the resistance
between 1 and 2 can be calculated as (right to left, in Ohm)

Ri—2/2 = (((1/2][1/2) +1/2)||1/2[[1/2) + 1/2)[[1/2]]1/2 = 11/60,  (17)
where a||b =ab/(a + b)
Resistance between the points 1 and 2 is 11/30 Ohm.

A more elegant solution
Consider the following current configuration. Current I is being fed into vortex
1. The other 11 vortices are connected to an external circuit in such a way that
each of them drains the same current, i.e., I/(12 — 1). Symmetry arguments
tell us that all of the 5 resistors (edges), emanating at vortex 1 will be carrying
the same current, namely /5. The voltage across the resistor 1 — 2 will then
be I/5 x 10hm.

Now let’s consider a second configuration. This time, vortex 2 is drawing
current I, and each of the other vortices (1,3 — 12) is connected to an external
circuit in such a way that the current flowing into each of them is I/(12 — 1)
The next step is to superimpose the two configurations. It is possible to do
because the resistors are linear, i.e., V' = const X I. For each resistor, the total
current flowing is the sum of the currents in the two configurations. Same
holds for the voltage drops. The currents flowing to the outside circuits from
vertices 3— 12 are zero, and so the connections to those circuits can be severed.
The current flowing through vertices 1 and 2 are equal in magnitude and are
I+1/(12—1). The voltage drop across resistor 1 —2is V =2 x I/5 x 10hm.
The resistance measured between points 1 and 2 is then

21/5

12/111

R= Ohm = 11/300hm (18)



Note that the numerator is equal to the total number of vortices minus one,
and the denominator is equal to the total number of resistors (edges), the latter
being equal to the

1
3 number ofvortices X number of resistors eminating from each vortex
(19)
We leave it to the reader to verify the formula for other symmetric polyhedra.



5. Let the angular speeds of the tops be w;, starting with the top one (so w; = w).
Let I be the moment of inertia of each top around its symmetry axis. Let 2 be the
angular speed of precession.

We will use 7 = dL/dt on each top. We therefore must determine dI/dt and the
torque 7 for each top.

o dL/dt:
If the w;’s are large enough (as we are assuming), then the angular momentum
of the sth top will have magnitude essentially equal to L; = Iw;, and L; will
point along the symmetry axis. (In other words, we can neglect the angular

momentum due to the slow angular velocity of precession. We will see below
that Q o< 1/w.)
The tip of I_/; will trace out a circle of radius L; sin @, with angular speed 2.
Therefore,
dL;
dt
and dL;/dt points tangentially around the circle.

= QL;sinf = QIw; sin 6, (20)

—

o T
None of the N tops are accelerating in the vertical direction. Therefore, the
forces on the bottom top are NMg upward (to balance the weight of all the
tops) at its lower end, and (N — 1)Mg downward (to keep up the other N — 1
tops) at its upper end. The torque on the bottom top (around its CM) therefore
has magnitude (2N — 1) M gr sin 0, where r is half the length of a top. It points
perpendicular to the page.

It is easy to see that the torque on the second-to-bottom top has magnitude
(2N — 3)Mgr sinf, and so on, until the torque on the top top is Mgr siné.

So the torque on the ith top has magnitude (2 — 1) Mgr sin 6.
Equating 7 with dL; /dt gives
(26 —1)Mgrsinf = Qlw; sin 6. (21)

Therefore,
wi = (2i — Dwy = (2 — Nw. (22)

NOTE: As a double-check, the reader can verify that these w;’s make 7 = dI_;/dt
true, where 7 and L are the total torque and angular momentum about the CM of
the entire system.



6.

(a) Let r be the distance from A to the pulley, and let 8 be the angle of the string

to A (w.r.t. to the vertical). Let T' be the tension in the string (7' will depend
on r and ). Then F = ma, along the direction of the string, on masses A and
B gives, respectively,

T —mgcosl = mré? — mfr,
T—mg = mi. (23)

These combine to give 27 = rf2 — g(1 — cos #). Using the small angle approxi-
mation for cos @, we have

o 1
2 = 1% — 5g92. (24)

Consider two cases of the motion.

o Immediately after A is given the kick:
At this time, r is essentially not changing. Hence, the motion is approxi-
mately that of a pendulum of length £. Therefore, # and 6 take the form

0~ < sinwt, and 0~ 2 cos wt, (25)
T T

where w = /g/r, and r = £. Plugging these expressions into eq. (24),
and using w? = g/r, gives
2 2
. g¢ 2 ge . 2
27 = ~7 cos wt — oy Sin wt. (26)
The sin? wt and cos? wt terms average to 1/2 over a few periods. Therefore,
the average value of 7, over a few periods, is
2
.. €g
r=—. 27

This is positive. Hence, mass B initially starts to climb.

e After B has risen a significant distance:
In this case, r will be changing, so the motion won’t look exactly like that
of a pendulum.! However, it turns out that # is still given by eq. (27),

(except that both e and r will have changed; we will show how e changes,
in part (b)). Let us see why this is true.

'We will find in part (b) that after a while, 7 is roughly the same size as the speed
of the pendulum when it passes through 8 = 0. So the motion is not like a that of a

pendulum.
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Eq. (24) is still valid when 7 # 0. The quantities that require some care
are the 0 and 0 in eq. (25). It is not obvious that these expressions are
valid, since the motion doesn’t resemble that of a pendulum. However,
these forms of @ and 6 are still true, for the following reason.

At a given time, let 7 = v. Consider a frame moving at downward at
constant speed v. In this frame, the motion of A looks like that of a
pendulum. The acceleration due to gravity in this frame is still g. And
most importantly, the fractional change in 7, over one period, is very small
(because 7 is very small, as we shall see). Hence, the motion looks like
that of a pendulum with definite frequency w = /g/r. And since the
frame moves at constant speed, # in this frame equals 7 is the lab frame.
So eq. (27) is still valid. Hence, 7 is always positive, and so r increases.
Therefore, mass B is the one that hits its pulley.

(b) From eq. (27), the initial acceleration of B is a; = €2g/8¢2. If this were the
acceleration at all times, then the speed of B when it hits the pulley would be
V2ail = \/e2g/4L. This, however, is not correct, because as time goes by both
€ and £ in eq. (27) change, thereby making 7 change as B rises. To determine
how 7 behaves, it will suffice to determine how e depends on 7.

Claim: The amplitude € scales with  according to € oc /%,

Proof: We will find € as a function of r by looking at the kinetic energy of A
at 6 =0.

The kinetic energy of A, at @ = 0, decreases in time. This is most easily seen
by noting that B picks up KE, since it begins to move upward; therefore A
must lose KE. (Consider an instant when § = 0. The total potential energy
of the system is the same as when it started. Therefore, the KE gained by B
equals the KE lost by A.)

This relationship between the KE’s of A and B, at 8 = 0, may be expressed as
d (1 . 1 d (1
N L
= (2mr h—o + 5T 7 \ g™’ (28)

Now, d (%miﬂ) is the work done on B, which is dWp = (T — mg)dr. From
egs. (23) and (27), we find

dWp mge>
=T —mg=—2—, 29
dr mg 872 (29)
where we have taken an average over a few periods to obtain the second equal-

ity.
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Also, eq. (25) gives 67_, = (ew/r)?, with w = \/g/7. So eq. (28) becomes

d [ mge? dWp mge>
JE— = —2 = — .
dr < 2r ) dr 4p2 (30)

Taking the derivative and simplifying yields

lde r

- = 31

edr 4 (31)
Integrating and then exponentiating gives €, = e(r) = Cr'/%. We therefore
find that under this very slow change in r, the amplitude € scales like 71/4. m

The initial condition €¢; = €, gives

6= (%)” " (32)

The acceleration in eq. (27) then becomes

. €2 1
j= (8—\2) - (33)

Multiplying by 7 and integrating gives
72 €g e2g 1

ik (m) N e

where the constant of integration on the right-hand side was determined using
the condition that 7 = 0 when r = /.

Finally, plugging in r = 2/ gives

P = 622—5 (1 _ %) (35)

NoTE: This 7 is the same order of magnitude as the angular speed of the
‘pendulum’ at € = 0, namely r0 = €,w,, because this is (up to factors of order

1) equal to epwy = €4/g/%.
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