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Solutions

1. (a) In case of the air bubble the level will stay the same, since the volume of the
displaced water is exactly equal to the "extra” volume of water that came from
the molten block.

In case of the frozen in piece of lead, the level of water will decrease, because
the volume of the water displaced due to the lead piece exceeds the volume of
the piece.

(b) Since the positrons are a lot lighter than the protons, it makes sense to divide
the problem in two parts.

First, the positrons fly away while the protons stay in place. The energy con-
servation requires that
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where a = 2.3 x 10728 m, or

Vet = %(4+ 1/v2) ~ 1100m/s (2)

After that, the protons fly away:

v, =\ a/V2MI ~ 9.8m/s. (3)

2. The forces on the particle are the friction force and the magnetic force, so F =
—at + g x B. The particle will remain in the z-y plane, so ¥ has no component in
the Z direction. The cross product takes a simple form, and we have

F, = —ov;+ qBuv,,
F, = -—av, — qBuv,. (4)
Equivalently,

d’z dx dy

— = —a— +gB—,
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— = —a—= —gB—. 5
e “at (5)



Integrating these equations from the time the particle enters R, ¢ to the time it comes
to rest, we obtain

mAv, = —alAzx+ qBAy,
mAv, = —alAy-—¢BAz, (6)

We want to find the coordinates of P, namely (Az, Ay).

The initial velocity is @ = (0, vg, 0), and the final velocity is ¢ = (0,0, 0), so Av, =0
and Av, = —vg. Solving egs. (6) for Az and Ay gives

qBmug Qmuy
Az = ——, Ay= ——-. 7
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A There is an equivalent geometrical solution. Consider a small

interval of time dt. The particle will change its position by
dr = vdt. Over the same time period, the speed will change by

dr av, dv, = ~-vdt opposite to the direction of motion, and by dv,, =

dv av %vdt in the direction normal to it. Note that the components
of the velocity change are proportional to the displacement.

R Similar set of vectors can be drawn for any small df. Summing

them up, and knowing the total change in the particle speed
(—vo), we can draw the final diagram. Since the proportionality
is conserved in vector addition, the total displacement R (and,
of course, its components) can be easily found.

. The key to this problem is to realize that the stick will lose contact with the wall
before it hits the ground. The first thing we must do is calculate exactly where this
loss of contact occurs.

Let r = £/2, for convenience. It is easy to see that while the stick is in contact with
the wall, the center of mass of the stick will move in a circle of radius r. Let # be the
angle between the wall and the radius from the corner to the CM of the stick. (This
is also the angle between the stick and the wall.)

We will solve the problem by assuming that the CM always moves in a circle, and
then determining the point at which the horizontal CM speed starts to decrease (i.e.,
the point at which the normal force from the wall becomes negative [which it of course
can’t do)).



By conservation of energy, the kinetic energy of the stick is equal to the loss in
potential energy, which is mgr(1 — cos#), where 6 is defined above. This kinetic
energy may be broken up into the CM translational energy plus the rotation energy.
The CM translational energy is simply mr292/2 (since the CM travels in a circle).
The rotational energy is 192/2. (The same G applies here as in the CM translational
motion, because # is the angle between the stick and the vertical.) Letting I =
pmr?, to be general (p = 1/3 for our stick), we have, by conservation of energy,
(1+ p)mr292/2 = mgr(1l — cos#). Therefore, the speed of the CM, v = ré, is

2gr
v:,/l_*_p (1 —cosb). (8)

The horizontal speed is therefore

2
Uy = Mlirp (1 —cosf)cosb. (9)

Taking the derivative of \/(1 — cos#) cosf, we see that the speed is maximum at
cosf = 2/3. (This is independent of p.)

Therefore the stick loses contact with the wall when
cosf =2/3. (10)

Using this value of 8 in eq. (9) gives a horizontal speed of (letting p = 1/3)

Uy = %\/297" = é\/gﬁ (11)

This is the horizontal speed just after the stick loses contact with the wall, and thus
is the horizontal speed from then on, because the floor exerts no horizontal force.

. Consider the collision between two sticks. Let the speed of the end of the heavy one
be V. Since this stick is essentially infinitely heavy, we may consider it to be an
infinitely heavy ball, moving at speed V. (The translational degree of freedom of the
heavy stick is irrelevant, as far as the light stick is concerned.)

In the same spirit as the (easier) problem of the collision between two balls of greatly
disparate masses, we will work out this problem in the rest frame of the infinitely
heavy ball right before the collision. (The problem can be done in the lab frame, but
our method here is a little less messy.) The situation reduces to a stick of mass m,
length 2r, moment of inertia pmr?, and speed V. approaching a fixed wall To find



the behavior of the stick after the collision, we will use (1) conservation of energy, and
(2) conservation of angular momentum around the contact point.

Let u be the speed of the center of mass of the stick after the collision. Let w be its
angular velocity after the collision.

Since the wall is infinitely heavy, it will acquire zero kinetic energy. So conservation

of F gives
lmV2 = lmuQ + l(,0m7“2)<,u2. (12)
2 2 2
The initial angular momentum around the contact point is L = mrV', so conservation
of L gives (breaking L after the collision up into the L of the CM plus the L relative
to the CM)

mrV = mru+ (pmr?)w. (13)
Solving eqs. (12) and (13) for u and rw in terms of V' gives

1
U= V—p, and rw=YV .
1+p T+p

(14)

(The other solution, # = V and rw = 0 represents the case where the stick misses the

wall.)

Going back to the lab frame (i.e., subtracting V' from the speed u) we see that the
collision gives the the lighter stick a CM speed equal to v = 2Vp/(1 + p) in the
same direction as the original V. But the far end of the light stick has a backwards
rotational speed equal to rw = 2V/(1+ p). This rotational speed is greater than the
CM speed, so the far end of the light stick travels at a speed

2(1— p)

Vi=rw—v=V
1+p

(15)

in the direction opposite to the original V.

The same analysis works in the next collision. In other words, the bottom ends of the
sticks move with speeds that form a geometric progression with ratio 2(1—p)/(1+p).
If this ratio is less than 1 (i.e., p > 1/3), then the speeds go to zero, as n — oc. If it
is greater than 1 (i.e., p < 1/3), then the speeds go to infinity, as n — oc. If it equals
1 (i.e., p = 1/3), then the speeds are independent of n, as n — oc.

Therefore,

P=3 (16)

is the desired answer.



5.

A uniform stick has p = 1/3 (usually written in the form I = m¢?/12, where £ = 2r).

Although in the case where p is strictly equal to zero the centers of masses of the

sticks would remain at rest while their rotational speeds would form a geometric

progression with ratio 2, we are not considering this to be the correct answer. Real

objects with finite mass have a finite moment of inertia. A proper physical approach
then would require taking a limit as p — 0, but in that case the limit as n — oc is

infinite.

(a)

The forces on the particle are gravity (mg) and the normal force (N) from the
cone. In our situation, there is no net force in the vertical direction, so

N sinf = myg, (17)

i.e., N = mg/sinfl. Therefore, the inward horizontal force, N cos#, equals
mg/ tanf. Thisforce must account for the centripetal acceleration of the particle
moving in a circle of radius htan . Hence, mg/tanf = m(htan#)w?, and

_ jg_1
w_\/;tanﬁ' (18)

The forces on the ring are gravity (mg), the normal
force (N) from the cone, and a friction force (F)

pointing up along the cone. In our situation, there
is no net force in the vertical direction, so

F Nsin@ + F cosf = mg. (19)

The fact that the inward horizontal force accounts

m
8 for the centripetal acceleration yields

N cos# — Fsinf = m(htan 6)w?. (20)

We must now consider the torque, 7, on the ring. The torque is due solely to
F (because gravity provides no torque, and N points though the center of the
ring, by assumption (2) in the problem). So

T=rkF, (21)

and it points in the direction along the circular motion. Since 7 = df/dt, we
must now find dL/dt.

L is made up of two pieces. One comes from the center of mass motion of
the ring, which revolves around the axis of the cone. This part of L does not



change, so we may neglect it in calculating df/dt. The other piece comes from
the rotation of the ring. Let us call this part L’. It points up along the cone, so
the L' vector traces out a cone in which the tip of L’ moves in a circle of radius

L'sin @. The frequency of this circular motion is of course the same w as above.
Therefore,

(ji—f = dd—Lt/ =wlL'siné (22)
(in the direction of the circular motion).
Thus, 7 = dL/dt gives
rF = wL'siné. (23)

But L' = mr?w’, where ' is the angular speed of the ring. And we know that w’
and w are related by rw’ = (htanf)w (the rolling-without-slipping condition)®.
Therefore L' = mr(htanf)w. Using this in eq. (23) yields

F = mw?*(htan)sin 6. (24)
Egs. (19), (20), and (24) have the three unknowns, N, F’, and w. We can solve
for w by multiplying eq. (19) by cos#, and eq. (20) by siné, and taking the
difference, to obtain

F = mgcos — mw*(h tan 8) sin 6. (25)

Equating this expression for I” with that in eq. (24) gives

_Jg 1
Y=\ 2htane (26)

This frequency is 1/4/2 times the frequency found in part (a).

REMARK: If one considers an object with moment of inertia pmr? (our ring has
p = 1), then one can show by the above reasoning that the “2” in eq. (26) is
simply replaced by (1+ p).

First Solution:

Consider one of the collisions of the block and the particle. Let V and v be
the speeds of the block and particle, respectively, after the collision. Let the
collision occur at a distance £ from the wall. We claim the the quantity £(v—V)
is an invariant (i.e., for each collision, it is the same). The proof is as follows.

! Actually, this isn’t quite true, for the same reason that the earth spins around 366
instead of 365 times in a year. But it’s valid enough, in the limit of small r.



Let us find the position, ¢, of the following collision. The time to the next
collision is given by Vit + vt = 2¢ (because the sum of the distances traveled by
the two objects is 2¢). Therefore, since ¢’ = £ — V't, we have

=tv-=V)/(v+V). (27)

We now invoke the handy fact that in an elastic collision, the relative speed of
the particles before the collision is equal to the relative speed after the collision.
(This is most easily proved by working in the center of mass frame.) Therefore,
letting V'’ and v’ be the speeds of the block and particle, respectively, after the
next collision, we have

v+ V=0 -V (28)

Using this in eq. (27) gives
O -=Vy=tv-V), (29)

as was to be shown.

What is the value of this invariant? After the first collision, the block continues
to move essentially with speed V; (up to corrections of order m/M), and the
particle acquires a speed essentially equal to 2V (up to corrections of order
m/M). (The latter is most easily seen by working in the frame of the heavy
block.) So the invariant £(v — V) is essentially equal to L(2Vy — Vi) = LVj,.
Let L. be the closest distance to the wall. When the block is at this closest
point to the wall, its speed is zero. Therefore, all of the initial kinetic energy
of the block belongs to the particle. Thus, v = Vo/M/m. So at this point our
invariant tells us LVy = L.(Vo/M/m — 0), and so

Lo~ Ly/—. (30)

Second Solution:
Let V() be the speed of the block, and let v(t) be the speed of the particle. Let
z(t) be the distance from the wall to the block.

The block reaches its closest point to the wall when all of its initial kinetic
energy is transferred to the particle, i.e.,

1 1

§mv2 = §MV02. (31)
Hence, v = Vo/M/m at this point. Therefore, if we can find a relation between
v(t) and z(t), we are done.



We claim that for M > m, the product v(t)z(t) is essentially equal to VL.
The proof is as follows.

Consider the later times when the bounces are very frequent, and when v is
very large, so that a large number, dn, of bounces occur during a small period
of time, dt, where z does not change significantly.

Since the particle travels a distance v dt during a time dt, and since the distance
from the block to the wall and back is 2z, we have

vdt
2%

dn = (32)
Each collision between the block and the particle increases the particle’s speed
by essentially 2V (because M >> m, so the block is essentially infinitely heavy).
Therefore, the increase in the speed of the particle during the time dt is
/v dt
dv=2Vdn=Y"% (33)

x

But V = —dz/dt, so we have

vdx
dv=———. 34
v=-2 (34)
Dividing by v and integrating gives In v = — In z 4 (const). Therefore,
ve =C. (35)

Thus, the speed of the particle is inversely proportional to the distance between
the wall and the block.

This is just what we expect if we consider the particle to be a one-dimensional
gas. Indeed, the adiabatic compression of such gas would be governed by an
invariant PV" = const, where

_gg_cy+1_§+1
’Y—CV— Cv = ;

(36)

No|=-

where 7 is the number of degrees of freedom. For the one-dimensional gas, ¢ = 1,
so v = 3 and PV?3 = const. Since PV is proportional to 7', or v2, V is z in the
one-dimensional case, v?z? = const, or vz = C.

We must now determine the constant C' by looking at the first few collisions.
The first collision gives the particle a speed 2V{ (it’s not quite 2Vj, but the

error is of order m/M). After the collision, the block continues to move with
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(essentially) speed Vj, so it is easy to calculate that the second collision occurs
at (roughly) z = L/3.

After the second collision, the particle has speed 4V, while the block continues
to have speed Vj, so we find that the third collision occurs at z = L /5.

After the third collision, the particle has speed 6V,, while the block continues
to have speed Vj, so we find that the fourth collision occurs at z = L/7.

In general, we find that the kth collision occurs at L/(2k — 1). And the particle
had speed 2(k — 1)Vj before the collision, and 2kVj after it. This is valid up to
order m/M corrections, as long as k is not too large.

For large enough M/m, we may make this realm overlap with the above realm
where there is a large number of collisions in a short period of time. So we find
C =vx =~ (2kV)L/(2k — 1) = VuL, since k can be made large if M/m is very
large. Therefore,

ve = VL. (37)
Using v = VyL/z in eq. (31), we find that the closest approach, z., of the block

to the wall is
m
= Ly —.
T, 1/ (38)

Let V' and v be the speeds of the block and particle, respectively.

First Solution:

The decrease in the momentum of the block due to a bounce is equal to the
change in the momentum of the particle from the bounce, which is roughly
equal to 2mv (we are assuming V' small compared to v, which is the case after
the first few collisions). If there are dn bounces in a time dt, then conservation of
momentum during the time dt gives (assuming v stays fairly constant throughout
the small interval dt).

MdV = —2muvdn. (39)

Conservation of energy, MV?/2 + mv%/2 = MV /2, allows us to write v in

terms of V:
[ M V2
=Vor/ —1/1 — —. 4
v ‘0 m V02 ( 0)

Eq. (39) then gives (changing variables to y = V/Vj, and integrating up to the

2Tt should be understood that this and all the other numbers in the next few paragraphs
are approximations which become arbitrarily accurate in the limit M > m.



closest approach to the wall, which corresponds to V =0, and hence y = 0)

1 |M [(° dy /N
— R —_— = — d :_AV- 41
2 m/1 V1-—y? o (41)

(The integrand is actually not valid for V near Vj, i.e. for y near 1, because
eq. (39) is not valid there. But the error there is small compared to the total
number of bounces.)

The integral gives arcsiny, which yields —7/2 when evaluated between 1 and
0. So the total number of bounces is

N~ T M (42)
4\ m

Second Solution:
Let V' and v be the speeds of the block and particle, respectively, after a given
collision. Let V' and «’ be the speeds of the block and particle, respectively,
after the following collision. Conservation of momentum in this second collision
gives

MV —mv=MV'+mv'. (43)
This equation, together with eq. (28), allows us to solve for V/ and v’ in terms
of V and v. In matrix form, we obtain

‘/l M-m —2m v
(V)= (g ) (V). m
M+4m M4m

The eigenvectors, A;, and eigenvalues, A;, of this matrix are

1 M — 21 M .
Ay = s M= - + ! upe e, (45)
=1/ M+m M+m

e, (46)

:M—I—m M+m

1 M-m 2ivMm iy
AQ = i M s AQ

m

where § = arctan(2vVMm/(M + m)) = 2/m/M.
The initial conditions are (V,v) = (V5,0) = (Vo/2)(A1 + Az). Therefore, the
speeds after the nth bounce are given by

v, | 2

S\
( Vn ) = D00ma, 4 anay). (47)
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Writing A\; = €%, Ay = ¢7*%, and using the explicite form of the A;, we have

v, ) Vo ing i cosnf
e _(ezn Al —|— € wm AQ) = ‘/0 M . . (48)
Uy, 2 \/ - sinnf

The block makes its closest approach to the wall when Viy = 0, i.e., when
N6 = 7 /2. Using the definition of 8 gives

No— T 1
2 arctan QMV ]_\fﬂzn
T M
~ T M 49
A\ (49)
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