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SOLUTIONS

Just before By hits the ground, both balls are moving downward with a velocity obtained
via mv?/2 = mgh; thus v = /2gh. Just after By hits the ground, it moves upward
with a speed v, while Bj is still moving downward with speed v. The relative speed is
therefore 2v. Hence, after the balls bounce off each other, the relative speed is still 2v
(as can be seen by working in the frame of reference where B; is motionless, and using
my1 3> mg). Since the speed of B; essentially stays equal to v, the upward speed of B,
is therefore 2v + v = 3v. By conservation of energy, it will therefore rise to a height of
H =d+ (3v)?/(2g), or

H=d+ 9h. (1)

Just before By hits the ground, all of the balls are moving downward with a velocity
obtained via mv?/2 = mgh; thus v = \/2gh.
Let us inductively determine the speed of each ball after it bounces off the one below it.
If B; achieves a speed of v; after bouncing off B;_q, then what is the speed of B;4; after
it bounces off B;? Well, the relative speed of B;11 and B; (right before they bounce) is
v+ v;. This is also the relative speed after they bounce. The final upward speed of B¢
is therefore (v + v;) + v;, so

Viy1 = 2v; + . (2)

Since v; = v, we obtain v; = 3v (in agreement with part (a)), vs = Tv, v4 = 15v, etc. In
general,
v, = (2" = 1o, (3)

which is easily seen to satisfy eq. (2), with the initial value v; = v.

JFrom conservation of energy, B,, will bounce to a height of H = [+ (2" — 1)?v?/(2g), or
H =1+ (2" —1)*h. (4)

If A is 1 meter, and we want this height to equal 1000 meters, then (assuming / is not
very large) we need 2" — 1 > 4/1000. Five balls won’t quite do the trick, but six will,
and in this case the height is almost four kilometers.

[Escape velocity from the earth is reached when n = 14. Of course, the elasticity assump-
tion is absurd in this case, as is the notion that one may find 14 balls with the property
that my > my > -+ > my4.]

It is fairly easy to see that at a point P far away from the ring the electric field must
point slightly away from the axis (assuming that the ring is positively charged). This is
because the distances from different points on the ring to P differ only by small second-
order effects (on the order of the ratio of R? to the square of the distance from the ring to
P), whereas the radial components of the different contributions to the field at P differ
by first-order effects of this ratio.



Now, if we can demonstrate the fact that the field points inward toward the axis at
some point on the cylinder, then we can simply invoke continuity of the field (since it
points outward far away) to say that at some point the field lies along the cylinder.
This demonstration can be done with a messy calculation for points in the plane of the
ring, but it’s easier to just use Gauss’ Law: The total flux through the cylinder must
be zero; therefore, given that it points outward somewhere (and that it obviously points
outward at the ends of an imaginary cylindrical Gaussian surface), it must point inward
somewhere.

(b) The reasoning is incorrect; the total force exerted by the bottom of B is not equal to
the pressure times the area of the bottom. The bottom is exerting a force on the string
(downward). Thus the pressure is actually a bit higher, since the sum of all the forces
exerted by the bottom must indeed be the weight of the water.

[This is consistent with the fact that a little piece of area on the bottom of B has to
support a taller column of water than one on the bottom of A. But just giving this
column-of-water reasoning only says that the given reasoning is incorrect; it doesn’t
explain why it is incorrect.]

3. First Solution: The key is to realize that if a voltage difference is applied between points A
and C, then points B, D, F', and H are all at the same potential (each one is, by symmetry, at
a potential equal to the average of the potentials at A and C). Therefore, we can bring these
four points together, without changing the resistance between A and C'. We may then put
the whole network in a plane, with A, C', G, and F as the vertices of a square, and one point
(representing B, D, I', and H) in the middle. Each side of this square is a 19 resistor, and
there are also four 1€2 resistors going from each of A, C, G, and F to the point in the middle.
(The four remaining resistors out of the original twenty-four connect the identified points B,

D, F,and H.)

We therefore equivalently have a square of 1€2 resistors, and a resistor of iQ going from each
vertex to a point in the middle. We may then identify the midpoint of AC with the point
in the middle (since they are at the same potential); likewise for the midpoint of EG. This
process essentially adds on a resistor of %Q from each of A, C, GG, and FE to the center, while
eliminating sides AC and FG of the square. So now we effectively have a 1Q resistor between
A and F, a 1€ resistor between C' and G, and %Q resistors from each of A, C', GG, and F to
the middle. It is easy to see that this yields a resistance of %Q between A and C.

Second Solution (due to Kiran Kedlaya): Let A be at a voltage of +1, and C be at a voltage of
—1 (we may pick these to have magnitude 1, without loss of generality). Then by symmetry,
the voltages of B, D. F’, and H are all 0. Also, the voltages of I and G are 4z and —z,
respectively, where z is to be determined.

Now, the current along any of the resistors is simply equal to the voltage difference of the
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endpoints (using [ = V/R, with R = 1Q2). So the sum of the currents going into, say, ' (which
come from the six points A, F, H, B, D, and G) is

Ige=(1-2)+(0-2)+(0—-2)+(0—2)+(0—2)+ (-2 —2)=1-Txz. (5)

But this sum must be 0. Hence z = %

It is then easy to see, by the same reasoning, that the current flowing out of A (or into C) is
_ 48
Since the voltage difference between A and C' is 2, and the current between them is %, the

resistance between them must be %Q.

(a) 1. Let us find the velocity (vg,v,) of the ball just after it bounces off the left ring. If
the ball takes a time ¢ to hit the other ring, then we must have

2v, = gt. (6)

Also, if the bounces on the rings occur at an angle of § from the horizontal, then the
horizontal distance between contact points is 2R(1 — cos#). Hence,

vyt = 2R(1 — cosb). (7)

Eliminating ¢ from the previous two equations, and using v, = v, tan#, gives

(ve, vy) = VGR <\/C0t 6(1 — cos @), \/tane(l — COSH)) . (8)

Now, AP, = 2mu,, so to maximize AF,, we want to maximize cot (1 — cos#).
Setting the derivative of this equal to zero yields

cos®f —2cosf+ 1 =0. (9)

An obvious root is cos§ = 1. The two other roots are then cos§ = (—14+/5)/2. The
root of 1is not the one we want, since AP, « v, — 0asf — 0 (since 1—cosé =~ 6% /2,
and cotf ~ 1/6). So the maximum must occur at

(10)

(This happens to be the inverse of the golden ratio. 6 is about 52°.)

ii. A. Using eq. (8), along with tane ~ ¢ and cose = 1 — ¢?/2 for small ¢, we have:



o If § = ¢, with e — 0, then

(v 0,) = \JgR/2 (1%, 2. (11)

To leading order in ¢, the speed therefore goes like S = /g Re/2, which goes

to zero, as € — 0.
o If 0 =m/2—¢, with e > 0, then

(v vy) = VR (2, 71/3). (12)

To leading order in ¢, the speed therefore goes like S = \/gR/¢, which goes
to infinity, as € — 0.

B. Force is the change in momentum per time, so the average horizontal force, F,,
needed to keep the rings together, is I/, = AP, /T where T the time between
bounces. Since AP, = 2mv, and T = 2v,/g, we see that F, = AP,)T =
mgv,/v,. Hence,

F, = mgcoth. (13)

Therefore
o If § = ¢, with e — 0, then

I, = mgcotexmg/e. (14)
o If 0 =m/2— ¢, with e > 0, then
F, = mgcot(n/2 — €) = mge. (15)

In the first limit, even though the speed of the ball approaches zero, the average
horizontal force becomes infinite as # — 0, because the bounces are so frequent.
In the second limit, the speed of the ball approaches infinity, but the average
horizontal force goes to zero as § — 7/2.

[Using the same reasoning, we see that the average vertical forceis F' = AP, /T =
mgvy, /v, = mg. This does not depend on the angle, which is the expected res-
ult; the rings are simply keeping the ball up above the ground, which requires
an average force equal and opposite to the gravitational force, mg.]

(b) i. This question is equivalent to: for what f(z) is v, independent of z¢7 If we look at
a contact point on the right half, we see that
Uz

— = —f'(z0). (16)

Uy



The distance to the following bounce at —z¢ is —2z¢ = vyt = v,(2v,/g). Therefore,
UpUy = —gTo. (17)

Combining the previous two equations gives

vy = —\/gxo f'(20). (18)

For this to be independent of g we must have
f(@) = aln(a) +5, (19)

where a and b are arbitrary constants (with a > 0).
ii. As in part (i) of part (a), we have F, = mguv,/v,. Using eq. (16), we obtain

F = —mgf'(z¢). For this to be independent of o we must have
f(z)=cx+d, (20)
where ¢ and d are arbitrary constants (with ¢ > 0).

5. First, note that it is believable that the system will eventually come to halt, because it loses
energy at each pivot point change. At each change, only the component of the mass’s velocity
that is perpendicular to the new pivot stick survives. The new speed is therefore cos @ times
the old speed. The energy thus decreases by a factor of cos? § at each pivot point change.

Let the angle between the pivot stick and the vertical be ¢. The component of gravity acting
on the mass in the tangential direction around the pivot point is gsin¢ = g¢, for small ¢.
I = ma gives ¢ = (g/£)¢. The solution to this differential equation is (with v = +/¢/¢)

B(t) = Ae" + Be ", (21)

where A and B are constants determined by the initial conditions. If given initial conditions
are ¢(0) = ¢o and ¢(0) = wp, then it is easy to solve for A and B, and we obtain

o(t) = <L02: “O) e + (LOQ; “O) e, (22)
Note that ¢(t) = 0 when

1 YPo — wo
= —In |22,
' 27n<7¢o+wo) (23)

We will find the total time of the movement by adding up the times between successive changes
in pivot points. More specifically, if ¢y is the first time the pivot point changes, t; is the second
time the pivot point changes, etc., then the total time is

T—to=> tn—tni. (24)
n=1

5



The quantity ¢, — ,—1 is given by twice the ¢ in eq. (23) (because the mass must rise to the
point where its speed is zero, and then fall back down), with ¢9 = +6/2 and wq equal to the
angular velocity right after the nth change of pivot point. This angular velocity right after
the nth change of pivot point is simply cos™ 8 times the angular velocity right before the first
change in pivot point. The latter can be found by equating the kinetic energy right before the
first change in pivot point to the loss in potential energy from the initial balancing point (and
using cos 3 &~ 1 — 32/2); we obtain w = Fv6/2, just before .

Therefore, the angular speed right after the nth pivot point change is equal to F(cos™ 8)v6/2,
and eq. (23) gives
1 1+ cos™ 6
bty —tp 1 =—In| ——— . 25
! 7n<1—cos“0) (25)
The total time, T' — tg, is thus

<1 14 cos™ 8
T —ty= —In|{———]. 2
0 712::17 n(l—cos”@) (26)

Now let’s try to simplify this, to show the leading behavior in 1/6.

With z = cos 8, we have, using the two hints,

Tty = ﬁl (Z In(142") = > In(1- xn))
I \n=1 n=1
9 o o xnk
Ll
o Lk
_ 2 Z 1 = - (doing the n sum first). (27)
Tioaakl-z

We can now use the approximation z¥ = cos® 8 ~ (1 — 6%2/2)% ~ 1 — k6?/2, but we must
be careful to use this only in its range of validity, k6?/2 < 1, i.e., k < 6?/2. We'll use the
approximation for the range of k up to M = /6%, with n < 1. In what follows, we will assume
that @ is small enough so that we may choose 7 to satisfy § < n < 1. Note that we then have
M>1.

We may write T — £ as

2 M 1 1-k82/2) 2 & 1 af
T—toz—Z—(7)+— y oo (28)
7 eaa k6?/2 7k odd. M kl-a
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The second term is less than
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The first term is approximately equal to

4
vy 02

Mo 4 1
kzoc:ldk_2 - Wk%dk_2

71'2

= 3 (30)

Since we have chosen 7 to satisfy # < n < 1, the first term above dominates, and we obtain

¢ [ 2
T—ton |2 2. 1
o=+ (3] @1

(a) If the moment of inertia of C' is zero, then there can be no torque on C' (because otherwise
there would be infinite angular acceleration). Hence the rubber band can apply no force
to C. Therefore, C' moves under the influence of only gravity, just like the block. So they
have the same speed at all times (since they started out at the same speed).

(b)

i. Let’s first define a few variables. These are all functions of ¢, but we won’t bother

writing the ¢ dependence.

A.
B.
C.

T mE o

Let f be the fraction of the distance C’s position is along the rubber band.
Let Vg be the speed of the block (then Vg = tgsinf = g,t).
Let vy, be the speed of the band at its point of contact with C'. (then v, = fVp =

Jget.
Let V' be the speed of C.

Let w be the angular velocity of C.
Let a be the acceleration of C'.
Let a be the angular acceleration of C.

Let I be the force the band applies to C', defined so that upward along the plane
is positive.



ii.

Then, since V = v + rw, we have
V = fgot + rw. (32)

Looking at the net force on C along the plane, we have mg, — F = ma. Looking
at the torque on C, we have rF = pmr?a. Eliminating I’ gives g, — pra = a.
Integrating this from time zero to time ¢ gives (since w and V are zero at t = 0)

V = get — prw. (33)
Adding eq. (33) plus p times eq. (32) gives

=)

o (34)

V — get <
So the ratio of C’s speed to the block’s speed is (1 + pf)/(1+ p). Now, let fu
be the limiting value of f, as ¢t — oc. Then for large ¢, ratio of C’s speed to the
block’s speed is the constant (1 + pfs)/(1+ p). Therefore, for large ¢, the ratio of
the distances travelled must be this same ratio, i.e.,

_1+rfe

fo =2 (35)

The solution to this equation is f.. = 1.
Using the fact that the position of the block is 1+ gt?/2, we have, by definition of
I

/Vd.t = f(1+ got*/2). (36)

Differentiating this equation gives
V= fget + (1+ got?/2) " (37)

This says nothing more than that C’s speed comes partly from the stretching of the
band (the fgot piece) and partly from the movement relative to the band (the term
with f’). For large t, we may drop the f’ term on the right, compared to the g,t2 f’/2
term. Then, using eq. (34), eq. (37) becomes

1
1=f+ #f’t. (38)
If we let the leading behavior of f be f ~ 1 — ¢t7%, the previous equation gives
a=2/(1+p). Thus,

fal— 2040, (39)



The relative speed of the block and C'is Viet = VB =V = got — got(1+ pf)/(1+ p).
Using the form of f in eq. (39) gives

Ve = 2P =350, (40)

C1+4p

A few examples:

A.

If p =0, then V. = 0, as we found in part (a).

B. If p =1/2, then Vi ~ t_1/3, and goes to zero as t — oc.
C.
D. If p = 2 (for example, a spool of thread that hangs down below the rubber

If p =1, then V¢ approaches a constant as t — oc.

band), then Vi ~ t'/3, and goes to infinity as t — oc; but this relative speed
becomes negligible compared to the block’s speed g4t, as t — oc; so f does
indeed approach 1, as we found in part (i).



